2-Hadron Interactions from Lattice QCD

4th Berkeley School on Collective Dynamics in High-Eenergy Collisions
May 14- 18, 2012

André Walker-Loud

Importance of QCD in Nuclear Physics Fine Tunings

Scattering on the Lattice

Challenges for Nuclear Physics on the Lattice

Examples

Importance of QCD in Nuclear Physics

- Phase transition from QGP to Hadrons
- Big Bang Nucleosynthesis and primordial hydrogen and helium abundance
- Production of Carbon 12
- Equation of state of dense nuclear matter: neutron stars
- **O** ...

Confinement of Quarks

QCD: computed on BlueGene-L by my LLNL colleagues, refined by Budapest-Wuppertal Collaboration

Importance of QCD in Nuclear Physics

- Phase transition from QGP to Hadrons
- Big Bang Nucleosynthesis and primordial hydrogen and helium abundance
- Production of Carbon 12
- Equation of state of dense nuclear matter: neutron stars
- **O** ...

The deuterium "bottleneck"

$$p+n\longleftrightarrow d+\gamma$$

until T \approx 100 keV (I billion K), t \approx 3 min $p+n\longrightarrow d+\gamma$

The deuterium "bottleneck" is broken, neutrons flow into He

He stability: \uparrow,\downarrow protons and \uparrow,\downarrow neutrons can be packed together

The early universe contains 75% H and 25% He by mass fraction

this picture very sensitive to binding energy of deuterium which is finely tuned (most nuclei have ~8 MeV binding per nucleon)!

$$B_d=2.22~\mathrm{MeV}$$

What if

 $B_d \ll 2.22 \; \mathrm{MeV}$ more finely tuned

all neutrons decay - no helium mostly hydrogen stars?

 $B_d \gg 2.22 \text{ MeV}$ natural scenario

all neutrons captured in deuterium and helium - no hydrogen no stars like ours!

(also very sensitive to $m_n-m_p \propto \left\{ \begin{array}{c} m_d-m_u \\ e^2/4\pi \end{array} \right.$)

we want to understand this from QCD

proton-neutron scattering at low energies

$$^{1}S_{0}:a\simeq -24 \text{ fm}$$

$$^{3}S_{1}:a\simeq5.5$$
 fm

 $R_{NN} \sim 1.4$ fm

Fine tuning gives small deuteron binding energy
Solving QCD can help us determine the nature of this fine tuning

Importance of QCD in Nuclear Physics

- Phase transition from QGP to Hadrons
- Big Bang Nucleosynthesis and primordial hydrogen and helium abundance
- Production of Carbon 12
- Equation of state of dense nuclear matter: neutron stars
- **O** ...

Large stars use He and neutrons to build new nuclei.

Higher temperatures and higher densities are needed.

even more finely tuned

but when matter is hot, $T > 10^8 \text{ K}$

even more finely tuned - source of complex life

the triple-α process Hoyle State

solving QCD can help us understand this fine tuning: chance? fundamental?

Importance of QCD in Nuclear Physics

- Phase transition from QGP to Hadrons
- Big Bang Nucleosynthesis and primordial hydrogen and helium abundance
- Production of Carbon 12
- Equation of state of dense nuclear matter: neutron stars
- **O** ...

Precise location depends upon detailed QCD interactions: Solving QCD can help us determine this phase transition

Importance of QCD in Nuclear Physics

- Phase transition from QGP to Hadrons
- Big Bang Nucleosynthesis and primordial hydrogen and helium abundance
- Production of Carbon 12
- Equation of state of dense nuclear matter: neutron stars
- ... fundamental symmetries (parity violation, CP, ...)

Multi-Hadron Interactions: Scattering

Scattering off "Hard Sphere"

Scattering off "Soft Sphere"

$$\frac{L}{\lambda} \sim 4 - 6$$

Pacman Boundary Conditions

single particle cavity modes one dimension

$$E_n = \sqrt{m^2 + q_n^2}$$
$$q_n = \frac{2\pi n}{L}$$

periodic boundary conditions

single particle cavity modes one dimension

$$E_n = \sqrt{m^2 + q_n^2}$$
$$q_n = \frac{2\pi n}{L}$$

periodic boundary conditions

repulsive interaction

attractive interaction

stronger attraction

energy eigenvalues modified by interactions

absence of interactions

$$p_{(n)} = q_n = \frac{2\pi n}{L}$$

energy eigenvalues modified by interactions

$$E_{(n)} = 2m + \Delta E_{(n)} = 2\sqrt{m^2 + Q_{(n)}^2}$$

rigorous relation
$$\delta(p) = \cot^{-1} \left| \frac{1}{\pi p L} S \left(\frac{p L}{2\pi} \right)^2 \right) \right|$$

knowing the phase shift is equivalent to knowing the two-particle interactions

$$S(\eta^2) = \lim_{\Lambda \to \infty} \sum_{\mathbf{n}}^{\Lambda} \frac{1}{\mathbf{n}^2 - \eta^2} - 4\pi\Lambda$$

Challenges of Lattice QCD?

- standard challenges for lattice QCD
- challenges for nuclear physics applications of lattice QCD

Lattice QCD: Standard Challenges

lattice spacing: desire at least 3 lattice spacings (preferably all < 0.1 fm)

$$t_{cpu} \sim 1/a^6$$

- lattice volume: $m_\pi L \geq 4$ (simple quantities) $m_\pi L > 2\pi$ better
- quark mass: desire to run at physical quark masses (even better $100 \lesssim m_\pi \lesssim 300~{
 m MeV}$)

$$t_{cpu} \sim 1/m_q$$

 disconnected diagrams: computationally much more expensive both in cpu hours and file storage

Lattice QCD: Challenges for Nuclear Phsysics

energy scales: energy scales of interest to nuclear physics are MeV (or even KeV) while total energy is GeV

$$\gamma = \sqrt{MB}$$
 $\gamma_{deut} \simeq 45~{
m MeV}$ new small scale $m_\pi L >> 1$ $\gamma L >> 1$

 signal to noise problem: baryon correlation functions have exponentially hard signal to noise problem

$$S/N \sim \mathcal{Z}e^{-A(m_N - \frac{3}{2}m_\pi)t}$$
 $A = \text{number of nucleons}$

- large basis of interpolating fields: to project onto the various densely packed energy levels in (small) nuclei, need large basis of operators
- Wick contractions: all the Wick contractions of the quark fields must be formed

these are/will be the dominant cost for the entire calculation

Computational Cost

For serious, respectable, calculation of nucleonnucleon interactions, at the physical pion mass, with existing algorithms

$$a\simeq 0.13$$
 fm

$$a \simeq 0.13$$
 fm $m_\pi \simeq 140$ MeV $L \simeq 8$ fm

$$L\simeq 8$$
 fm

$$m_{\pi}L \simeq 5.5$$

 $t_{CPU} \sim 100 \text{ TeraFlops Years!}$

1 Billion CPU hours

~I week on Sequoia (20 PetaFlops) BG/Q @ LLNL

H-Dibaryon

$$|B\rangle \sim |uds\rangle$$
 $|H\rangle \sim |uuddss\rangle$
 $\sim |\Lambda\Lambda\rangle$

1977 - Jaffe proposed H-dibaryon bound state

In dense nuclear matter, energetically favorable

Bound H-Dibaryon not found experimentally, but evidence for shallow bound state or resonance

Is H-Dibaryon bound?

$$\Delta E = 2\sqrt{M^2 + k^2} - 2m$$

Scattering State:
$$\Delta E = \frac{4\pi a}{ML^3} \left[1 + \mathcal{O}\left(\frac{a}{L}\right) \right]$$

Bound State:
$$\kappa^2 = -k^2$$

$$\kappa = \gamma + \frac{g_1}{L} \left(e^{-\gamma L} + \sqrt{2} e^{-\sqrt{2}\gamma L} \right) + \cdots$$

$$\gamma = \sqrt{M_{\Lambda}^{\infty} B_H^{\infty}}$$

Need Multiple Volumes! (or momentum boosted systems)

Volume dependence of Lambda

NPLQCD: PRD 84 (2011)

NPLQCD: PRL 106 (2011)

 $L \simeq 3.0 \text{ fm}$

$$B = 16.6 \pm 2.1 \pm 4.6 \text{ MeV}$$

(no electro-weak, single lattice spacing, single pion mass)

$$m_{\pi} \sim 400 \; \mathrm{MeV}$$

H-Dibaryon from Lattice QCD

"Evidence for a bound H-Dibaryon from lattice QCD" PRL 106, 162001 (2011)

$$N_f = 2 + 1, \ a_s \simeq 0.12 \text{ fm},$$

 $m_\pi \simeq 390 \text{ MeV}, \ L = 2.0, 2.5, 3.0, 3.9 \text{ fm}$

"Bound H-dibaryon in flavor SU(3) limit of lattice QCD" PRL 106, 162002 (2011)

$$N_f = 3, \ a_s \simeq 0.12 \text{ fm},$$
 $m_\pi \simeq 670,830,1015 \text{ MeV}, \ L = 2.0,3.0,3.9 \text{ fm}$

But not observed experimentally!

Simple extrapolation to physical pion mass

NPLQCD: Mod.Phys.Lett.A 26 (2011)

More sophisticated extrapolations (effective field theory) consistent with linear in pion mass

Haidenbauer and Meissner: Phys.Lett. B 706 (2011)

Haidenbauer and Meissner: arXiv:1111.4069

electromagnetic and weak interactions not included

Lattice QCD 2006: NN scattering

For quark masses > 2.5 x physical: fine tuning gone

Nucleon-Nucleon

Deuteron

NPLQCD:

PRD 85 (2012)

$$\kappa = \gamma + \frac{g_1}{L} \left(e^{-\gamma L} + \sqrt{2} e^{-\sqrt{2}\gamma L} \right) + \cdots$$

Nucleon-Nucleon

Di-Neutron PRD 85 (2012)

NPLQCD:

$$\kappa = \gamma + \frac{g_1}{L} \left(e^{-\gamma L} + \sqrt{2} e^{-\sqrt{2}\gamma L} \right) + \cdots$$

Nucleon-Nucleon

NPLQCD:

PRD 85 (2012)

Bound deuteron at this pion mass was not expected by most

 $n_f=0$:

Yamazaki, Kurumashi,

Ukawa: PRD 84 (2011)

Hyperon-Nucleon Interactions and Neutron Stars

Approximate neutron star by sea of static neutrons

Fumi's Theorem

Change in energy due to impurity

$$\Delta E = -\frac{1}{\pi \mu} \int_0^{k_F} dk k \sum \delta_l(k)$$

add Sigma Hyperons

$$\rho_n \sim 0.4 \; {\rm fm}^{-3}$$

$$\mu_n \simeq M_n + 150 \text{ MeV}$$

$$\mu_e \simeq 200 \text{ MeV}$$

$$\mu_{\Sigma^{-}} = m_{\Sigma^{-}} + \Delta E \lesssim 1290 \text{ MeV}$$

$$\Delta E \lesssim 100 \ \mathrm{MeV}$$

Sigma's important (strange quarks)

NPLQCD: PRD 81 (2010)

$n\Sigma^{-}$

NPLQCD:

arXiv:1204.3606

Lattice QCD + LO EFT

$$\Delta E = -\frac{1}{\pi \mu} \int_0^{k_f} dk \ k \left[\frac{3}{2} \delta_{^{3}S_1}(k) + \frac{1}{2} \delta_{^{1}\!S_0}(k) \right]$$

$n\Sigma^-$

NPLQCD:

arXiv:1204.3606

$$\mu_{\Sigma^{-}} = m_{\Sigma^{-}} + \Delta E \lesssim 1290 \text{ MeV}$$

$$\Delta E \lesssim 100 \text{ MeV}$$

Sigma's important (strange quarks)

Future Outlook

With Lattice QCD we can

- compute m_n-m_p, B_d , etc., as a function of the light quark masses, exploring the observed fine tunings in light nuclei
- compute NNN interactions from QCD
- compute Nucleon-Nucleon, Hyperon-Nucleon and Hyperon-Hyperon interactions from QCD
- in particular, combined with the methods of manybody Effective Theories, we can extend this knowledge to larger nuclei mapping out the quark mass dependence of the Hoyle-state, for example
- nuclear matrix elements: Parity Violating, EDM, ...

some of my collaborators

Imagery ©2011 NASA, Map data ©2011 Geocentre Consulting, 7

Sat

United

Kingdom

Norge Norway

Poland Deutschland

Sweden Sweden Earth

Україна

Türkiye Türkey

Google

Signal to Noise

$$\lim_{t \to \infty} S \sim e^{-m_N t}$$

$$\lim_{t \to \infty} \sigma^2 \sim e^{-3m_{\pi}t}$$

$$\lim_{t \to \infty} \frac{S}{\sigma} \sim e^{-\left(m_N - \frac{3}{2}m_\pi\right)t}$$

Unexpected quark mass dependence of hadronic observables is common in lattice QCD calculations

AVVL with LHPC: PRD 79 (2009)

Large cancelations between different orders

 $M_N = 938 \pm 9 \text{ MeV}$

 $M_N = 941 \pm 42 \pm 17 \text{ MeV}$

Linear in pion mass behavior observed in all dynamical lattice calculations with 2+1 flavors

AVVL: Lattice 2008 arXiv:0801.0663